Где используют титан и его сплавы. Титан - описание элемента с фото, характеристика его влияния на организм человека, а также потребность в этом химическом элементе. Сферы применения вольфрама

22.11.2023 Финансы

Монумент в честь покорителей космоса воздвигнут в Москве в 1964 г. Почти семь лет (1958-1964) ушло на проектирование и сооружение этого обелиска. Авторам пришлось решать не только архитектурнохудожественные, но и технические задачи. Первой из них был выбор материалов, в том числе и облицовочных. После долгих экспериментов остановились на отполированных до блеска титановых листах.

Действительно, по многим характеристикам, и прежде всего по коррозионной стойкости, титан превосходит подавляющее большинство металлов и сплавов. Иногда (особенно в популярной литературе) титан называют вечным металлом. Но расскажем сначала об истории этого элемента.

Окисел или не окисел?

До 1795 г. элемент № 22 назывался «менакином». Так назвал его в 1791 г. английский химик и минералог Уильям Грегор, открывший новый элемент в минерале менаканите (не ищите это название в современных минералогических справочниках - менаканит тоже переименован, сейчас он называется ильменитом).

Спустя четыре года после открытия Грегора немецкий химик Мартин Клапрот обнаружил новый химический элемент в другом минерале - рутиле - ив честь царицы эльфов Титании (германская мифология) назвал его титаном.

По другой версии название элемента происходит от титанов, могучих сыновей богини земли - Геи (греческая мифология).

В 1797 г. выяснилось, что Грегор и Клапрот открыли один и тот же элемент, и хотя Грегор сделал это раньше, за новым элементом утвердилось имя, данное ему Клапротом.

Но ни Грегору, ни Клапроту не удалось получить элементный титан . Выделенный ими белый кристаллический порошок был двуокисью титана TiO 2 . Восстановить этот окисел, выделить из пего чистый металл долгое время не удавалось никому из химиков.

В 1823 г. английский ученый У. Волластон сообщил, что кристаллы, обнаруженные им в металлургических шлаках завода «Мертир-Тидвиль», - не что иное, как чистый титан. А спустя 33 года известный немецкий химик Ф. Вёлер доказал, что и эти кристаллы были опять-таки соединением титана, на этот раз - металлоподобным карбонитридом.

Много лет считалось, что металлический титан впервые был получен Берцелиусом в 1825 г. при восстановлении фтортитаната калия металлическим натрием . Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент Шведской академии наук ошибался, ибо чистый titabnum быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а металлический титан Берцелиуса успешно сопротивлялся ее действию.

В действительности Ti был впервые получен лишь в 1875 г. русским ученым Д. К. Кирилловым. Результаты этой работы опубликованы в его брошюре «Исследования над титаном». Но работа малоизвестного русского ученого осталась незамеченной. Еще через 12 лет довольно чистый продукт - около 95% титана - получили соотечественники Берцелиуса, известные химики Л. Нильсон и О. Петерсон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметической бомбе.

В 1895 г. французский химик А. Муассан, восстанавливая двуокись титана углеродом в дуговой печи и подвергая полученный материал двукратному рафинированию, получил титан, содержавший всего 2% примесей, в основном углерода. Наконец, в 1910 г. американский химик М. Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов титана чистотой около 99%. Именно поэтому в большинстве книг приоритет получения металлического титана приписывается Хантеру, а не Кириллову, Нильсону или Муассану.

Однако ни Хантер, ни его современники не предсказывали титану большого будущего. Всего несколько десятых процента примесей содержалось в металле, но эти примеси делали титан хрупким, непрочным, непригодным к механической обработке. Поэтому некоторые соединения титана нашли применение раньше, чем сам металл. Четыреххлористый Ti, например, широко использовали в первую мировую войну для создания дымовых завес.

№22 в медицине

В 1908 г. в США и Норвегии началось изготовление белил не из соединений свинца и цинка , как делалось прежде, а из двуокиси титана. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же у титановых белил больше отражательная способность, они не ядовиты и не темнеют под действием сероводорода. В медицинской литературе описан случай, когда человек за один раз «принял» 460 г двуокиси титана! (Интересно, с чем он ее спутал?) «Любитель» двуокиси титана не испытал при этом никаких болезненных ощущений. TiO 2 входит в состав некоторых медицинских препаратов, в частности мазей против кожных болезней.

Однако не медицина, а лакокрасочная промышленность потребляет наибольшие количества TiO 2 . Мировое производство этого соединения намного превысило полмиллиона тонн в год. Эмали на основе двуокиси титана широко используют в качестве защитных и декоративных покрытий по металлу и дереву в судостроении, строительстве и машиностроении. Срок службы сооружений и деталей при этом значительно повышается. Титановыми белилами окрашивают ткани, кожу и другие материалы.

Ti в промышленности

Двуокись титана входит в состав фарфоровых масс, тугоплавких стекол, керамических материалов с высокой диэлектрической проницаемостью. Как наполнитель, повышающий прочность и термостойкость, ее вводят в резиновые смеси. Однако все достоинства соединений титана кажутся несущественными на фоне уникальных свойств чистого металлического титана.

Элементный титан

В 1925 г. голландские ученые ван Аркель и де Бур иодидным способом (о нем - ниже) получили титан высокой степени чистоты - 99,9%. В отличие от титана, полученного Хантером, он обладал пластичностью: его можно было ковать на холоде, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу. Но даже не это главное. Исследования физикохимических свойств металлического титана приводили к почти фантастическим результатам. Оказалось, например, что титан, будучи почти вдвое легче железа (плотность титана 4,5 г/см 3), по прочности превосходит многие стали. Сравнение с алюминием тоже оказалось в пользу титана: титан всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее и, что особенно важно, он сохраняет свою прочность при температурах до 500°С (а при добавке легирующих элементов - до 650°С), в то время как прочность алюминиевых и магниевых сплавов резко падает уже при 300°С.

Титан обладает и значительной твердостью: он в 12 раз тверже алюминия, в 4 раза - железа и меди . Еще одна важная характеристика металла - предел текучести. Чем он выше, тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести у титана почти в 18 раз выше, чем у алюминия.

В отличие от большинства металлов титан обладает значительным электросопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия - 60, железа и платины - 15, а титана - всего 3,8. Вряд ли нужно объяснять, что это свойство, как и немагнитность титана, представляет интерес для радиоэлектроники и электротехники.

Замечательна устойчивость титана против коррозии. На пластинке из этого металла за 10 лет пребывания в морской воде не появилось и следов коррозии. Из титановых сплавов сделаны несущие винты современных тяжелых вертолетов. Рули поворота, элероны и некоторые другие ответственные детали сверхзвуковых самолетов тоже изготовлены из этих сплавов. На многих химических производствах сегодня можно встретить целые аппараты и колонны, выполненные из титана.

Как получают титан

Цена - вот что еще тормозит производство и потребление титана. Собственно, высокая стоимость - не врожденный порок титана. В земной коре его много - 0,63%. Все еще высокая цена титана - следствие сложности извлечения его из руд. Объясняется она высоким сродством титана ко многим элементам и прочностью химических связей в его природных соединениях. Отсюда - сложности технологии. Вот как выглядит магниетермический способ производства титана, разработанный в 1940 г. американским ученым В. Кроллем.

Двуокись титана с помощью хлора (в присутствии углерода) переводят в четыреххлористый титан:

HO 2 + C + 2CI 2 → HCI 4 + CO 2 .

Процесс идет в шахтных электропечах при 800-1250°С. Другой вариант - хлорирование в расплаве солей щелочных металлов NaCl и KCl Следующая операция (в одинаковой мере важная и трудоемкая) - очистка TiCl 4 от примесей - проводится разными способами и веществами. Четыреххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136°С.

Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции

TiCl 4 + 2Mg → T + 2MgCl 2 .

Эта реакция идет в стальных реакторах при 900°С. В результате образуется так называемая титановая губка, пропитанная магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950°С, а титановую губку затем спекают или переплавляют в компактный металл.

Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермического. Эти два метода наиболее широко применяются в промышленности. Для получения более чистого титана и поныне используется иодидный метод, предложенный ван Аркелем и де Буром. Металлотермический губчатый титан превращают в иодид TiI 4 , который затем возгоняют в вакууме. На своем пути пары иодида титапа встречают раскаленную до 1400°С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этот метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно.

Несмотря на трудоемкость и энергоемкость производства титана, оно уже стало одной из важнейших подотраслей цветной металлургии. Мировое производство титана развивается очень быстрыми темпами. Об этом можно судить даже по тем обрывочным сведениям, которые попадают в печать.

Известно, что в 1948 г. в мире было выплавлено лишь 2 т титана, а спустя 9 лет - уже 20 тыс. т. Значит, в 1957 г. 20 тыс. т титана приходилось на все страны, а в 1980 г. только США потребляли. 24,4 тыс. т. титана... Еще недавно, кажется, титан называли редким металлом - сейчас он важнейший конструкционный материал. Объясняется это только одним: редким сочетанием полезных свойств элемента № 22. И, естественно, потребностями техники.

Роль титана как конструкционного материала, основы высокопрочных сплавов для авиации, судостроения и ракетной техники, быстро возрастает. Именно в сплавы идет большая часть выплавляемого в мире титана. Широко известен сплав для авиационной промышленности, состоящий из 90% титана, 6% алюминия и 4% ванадия . В 1976 г. в американской печати появились сообщения о новом сплаве того же назначения: 85% титана, 10% ванадия, 3% алюминия и 2% железа. Утверждают, что этот сплав не только лучше, но и экономичнее.

А вообще в титановые сплавы входят очень многие элементы, вплоть до платины и палладия . Последние (в количестве 0,1-0,2%) повышают и без того высокую химическую стойкость титановых сплавов.

Прочность титана повышают и такие «легирующие добавки», как азот и кислород. Но вместе с прочностью они повышают твердость и, главное, хрупкость титана, поэтому их содержание строжайше регламентируется: в сплав допускается не более 0,15% кислорода и 0,05% азота.

Несмотря на то что титан дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Вот характерный пример. Корпус химического аппарата, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава - 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый - 10 лет. Прибавьте затраты на замену стальных реакторов, вынужденные простои оборудования - и станет очевидно, что применять дорогостоящий титан бывает выгоднее, чем сталь.

Значительные количества титана использует металлургия. Существуют сотни марок сталей и других сплавов, в состав которых титан входит как легирующая добавка. Его вводят для улучшения структуры металлов, увеличения прочности и коррозийной стойкости.

Некоторые ядерные реакции должны совершаться в почти абсолютной пустоте. Ртутными насосами разрежение может быть доведено до нескольких миллиардных долей атмосферы. Но этого недостаточно, а ртутные насосы на большее неспособны. Дальнейшая откачка воздуха осуществляется уже особыми титановыми насосами. Кроме того, для достижения еще большего разрежения по внутренней поверхности камеры, где протекают реакции, распыляют мелкодисперсный титан.

Титан часто называют металлом будущего. Факты, которыми уже сейчас располагают наука и техника, убеждают, что это не совсем так - титан уже стал металлом настоящего.

Перовскит и сфен . Ильменит - метатитанат железа FeTiO 3 - содержит 52,65% TiO 2 . Название этого минерала связано с тем, что он был найден на Урале в Ильменских горах. Крупнейшие россыпи ильменитовых песков имеются в Индии. Другой важнейший минерал - рутил представляет собой двуокись титана. Промышленное значение имеют также титаномагнетиты - природная смесь ильменита с минералами железа. Богатые месторождения титановых руд есть в СССР, США, Индии, Норвегии, Канаде, Австралии и других странах. Не так давно геологи открыли в Северном Прибайкалье новый титансодержащий минерал, который был назван ландауитом в честь советского физика академика Л. Д. Ландау. Всего на земном шаре известно более 150 значительных рудных и россыпных месторождений титана.

Является одним из важнейших конструкционных материалов, поскольку сочетает прочность, твердость и легкость. Однако другие свойства металла весьма специфичны, что делает процесс получения вещества тяжелым и дорогостоящим. И сегодня нами будет рассмотрена мировая технология производства титана, кратко упомянем и .

Существует металл в двух модификациях.

  • α-Ti – существует до температуры в 883 С, обладает плотной гексагональной решеткой.
  • β-Ti – имеет объемно-центрированную кубическую решетку.

Переход осуществляется с очень небольшим изменением плотности, поскольку последняя при нагревании постепенно уменьшается.

  • Во время эксплуатации титановых изделий в большинстве случаев имеют дело с α-фазой. А вот при плавке и изготовлении сплавов металлурги работают с β-модификацией.
  • Вторая особенность материала – анизотропия. Коэффициент упругости и магнитная восприимчивость вещества зависит от направления, причем разница довольно заметная.
  • Третья черта – зависимость свойств металл от чистоты. Обычный технический титан не годится, например, для использования в ракетостроении, поскольку из-за примесей теряет свою жаростойкость. В этой области промышленности применяют только исключительно чистое вещество.

О составе титана поведает это видео:

Производство титана

Использовать металл начали только в 50-е годы прошлого века. Его добыча и производство являются сложным процессом, благодаря чему этот относительно распространенный элемент относили к условно редким. И далее мы рассмотрим технологию, оборудование цехов по производству титана.

Сырье

Титан занимает 7 место по распространенности в природе. Чаще всего это оксиды, титанаты и титаносиликаты. Максимальное количество вещества содержится в двуокисях – 94–99%.

  • Рутил – самая устойчивая модификация, представляет собой минерал синеватого, буровато-желтого, красного цвета.
  • Анатаз – довольно редкий минерал, при температуре в 800–900 С переходит в рутил.
  • Брукит – кристалл ромбической системы, при 650 С необратимо переходит в рутил с уменьшением объема.
  • Более распространены соединения металла с железом – ильменит (до 52,8% титана). Это гейкилит, пирофанит, кричтон – химический состав ильменита весьма сложен и колеблется в широких переделах.
  • Используется в промышленных целях результат выветривания ильменита – лейкоксен . Здесь происходит довольно сложная химическая реакция, при которой из ильменитовой решетки удаляется часть железа. В результате объем титана в руде повышается – до 60%.
  • Также используют руду, где металл связан не с закисным железом, как в ильмените, а выступает в виде титаната окисного железа – это аризонит, псевдобрукит .

Наибольшее значение имеют месторождения ильменита, рутила и титаномагнетита. Разделяют их на 3 группы:

  • магматические – связаны с участками распространения ультраосновных и основных пород, проще говоря, с распространением магмы. Чаще всего это ильменитовые, титаномагнетитовые ильменит-гематитовые руды;
  • экзогенные месторождения – россыпные и остаточные, аллювиальные, аллювиально-озерные месторождения ильменита и рутила. А также прибрежно-морские россыпи, титановые, анатазовые руды в корах выветривания. Наибольшее значение имеет прибрежно-морские россыпи;
  • метаморфизированные месторождения – песчаники с лейкоксеном, ильменит-магнетитовые руды, сплошные и вкрапленные.

Экзогенные месторождения – остаточные или россыпные, разрабатываются открытым методом. Для этого используют драги и экскаваторы.

Разработка коренных месторождений связана с проходкой шахт. Полученную руду на месте дробят и обогащают. Применяют гравитационное обогащение, флотацию, магнитную сепарацию.

В качестве исходного сырья может использоваться титановый шлак. Он содержит до 85% диоксида металла.

Технология получения

Процесс производства металла из ильменитовых руд состоит из нескольких стадий:

  • восстановительная плавка с целью получения титанового шлака;
  • хлорирование шлака;
  • производства металла восстановлением;
  • рафинирование титана – как правило, проводится с целью улучшения свойств продукта.

Процесс это сложный, многоэтапный и дорогостоящий. В результате достаточно доступный металл оказывается весьма дорогим в производстве.

О производстве титана расскажет данный видеосюжет:

Получение шлака

Ильменит является ассоциацией оксида титана с закисным железом. Поэтому целью первого этапа производства является отделение диоксида от оксидов железа. Для этого оксиды железа восстанавливают.

Процесс осуществляют в электродуговых печах. Ильменитовый концентрат загружают в печь, затем вводят восстановитель – древесный уголь, антрацит, кокс, и прогревают до 1650 С. При этом железо восстанавливается из оксида. Из восстановленного и науглероживающегося железа получают чугун, а оксид титана переходит в шлак. Последний в итоге содержит 82–90% титана.

Чугун и шлак разливают по отдельным изложницам. Чугун используют в металлургическом производстве.

Хлорирование шлака

Целью процесса является получение тетрахлорида металла, для дальнейшего применения. Непосредственно хлорировать ильменитовый концентрат оказывается невозможным, из-за образования большого количества хлорного железа – соединение очень быстро разрушает оборудование. Поэтому без стадии предварительного удаления оксида железа обойтись нельзя. Хлорирование проводится в шахтных или солевых хлораторах. Процесс несколько отличается.

  • Шахтный хлоратор – футерованное цилиндрическое сооружение высотой до 10 м и диаметром до 2 м. Сверху в хлоратор укладывают брикеты из измельченного шлака, а через фурмы подают газ магниевых электролизеров, содержащий 65–70% хлора. Реакция между титановых шлаком и хлором происходит с выделением тепла, что обеспечивает требуемый для процесса температурный режим. Газообразный тетрахлорид титана отводят через верх, а остатки шлака непрерывно удаляют снизу.
  • Солевой хлоратор , камера, футерованная шамотом и наполовину заполненная электролитом магниевых электролизеров – отработанным. В расплаве содержаться хлориды металлов – натрия, калия, магния и кальция. В расплав сверху подают измельченный титановый шлак и кокс, снизу вдувают хлор. Поскольку реакция хлорирования экзотермична, температурный режим поддерживается самим процессом.

Тетрахлорид титана очищают, причем несколько раз. Газ может содержать углекислый газ, угарный газ, другие примеси, так что очистка производится в несколько этапов.

Отработанный электролит периодически заменяют.

Получение металла

Металл восстанавливают из тетрахлорида магнием или натрием. Восстановление происходит с выделением тепла, что позволяет проводить реакцию без дополнительного обогрева.

Для восстановления используют электрические печи сопротивления. Сначала в камеру помещают герметичную колбу из хромо- сплавов высотой в 2–3 м. После того как емкость прогреют до +750 С, в нее вводят магний. А затем подают тетрахлорид титана. Подача регулируется.

1 цикл восстановления длится 30–50 ч, чтобы температура не повышалась выше 800–900 С, реторту обдувают воздухом. В итоге получают от 1 до 4 тонн губчатой массы – металл осаждается в виде крошек, которые спекаются в пористую массу. Жидкий хлорид магния периодически сливают.

Пористая масса впитывает довольно много хлорида магния. Поэтому после восстановления осуществляют вакуумную отгонку. Для этого реторту прогревают до 1000 С, создают в ней вакуум и выдерживают 30–50 часов. За это время примеси испаряются.

Восстановление натрием протекает почти таким же образом. Разница наличествует только в последнем этапе. Чтобы удалить примеси хлорида натрия, титановую губку измельчают и выщелачивают из нее соль обычной водой.

Рафинирование

Полученный описанным выше образом технический титан вполне годится для производства оборудования и емкостей для химической промышленности. Однако для областей, где требуется высокая жаростойкость и однородность свойств, металл не годится. В этом случае прибегают к рафинированию.

Рафинирование производится в термостате, где поддерживается температура в 100–200 С. В камеру помещают реторту с титановой губкой, а затем с помощью специального устройства в закрытой камере разбивают капсулу с йодом. Йод реагирует с металлом, образуя йодид титана.

В реторте натянуты титановые проволоки, по которым пропускают электрический ток. Проволока раскаляется до 1300–1400 С, полученный йодид разлагается на проволоке, формируя кристаллы чистейшего титана. Йод освобождается, вступает в реакцию. С новой порцией титановой губки и процесс продолжается, пока не исчерпается металл. Получение останавливают, когда благодаря наращиванию титана диаметр проволоки становится равным 25–30 мм. В одном таком аппарате можно получить 10 кг металла с долей в 99,9–99,99%.

Если необходимо получить ковкий металл в слитках, поступают иначе. Для этого титановую губку переплавляют в вакуумной дуговой печи, поскольку металл при высокой температуре активно впитывает газы. Расходуемый электрод получают из титановых отходов и губки. Жидкий металл затвердевает в аппарате в кристаллизаторе, охлаждаемом водой.

Плавку, как правило, повторяют дважды, чтобы улучшить качество слитков.

Из-за особенностей вещества – реакции с кислородом, азотом и впитывание газов, получение всех титановых сплавов также возможно лишь в электрических дуговых вакуумных печах.

Про Россию и другие страны-производители титана читайте ниже.

Популярные изготовители

Рынок производства титана достаточно закрытый. Как правило, страны, производящие большое количество металла, сами же и являются его потребителями.

В России самой большой и едва ли не единственной компанией, занимающейся получением титана, является «ВСМПО-Ависма». Она считается крупнейшим изготовителем металла, но это не совсем верно. Компания производит пятую часть титана, однако мировое потребление его выглядит иначе: около 5% расходуется на изделия и приготовление сплавов, а 95% – на получение диоксида.

Итак, производство титана в мире по странам:

  • Ведущей страной-производителем является Китай. Страна обладает максимальными запасами титановых руд. Из 18 известных заводов по получению титановой губки 9 расположены в Китае.
  • Второе место занимает Япония. Интересно, что в стране на авиакосмический сектор уходит только 2–3% металла, а остальной используется в химической промышленности.
  • Третье место в мире по производству титана занимает Россия и ее многочисленные заводы. Затем следует Казахстан.
  • США – следующая в списке страна-производитель, расходует титан традиционным образом: 60–75% титана использует авиакосмическая промышленность.

Производство титана – процесс технологически сложный, дорогостоящий и длительный. Однако потребности в этом материале настолько велики, что прогнозируется изрядное увеличение выплавки металла.

О том, как происходит резка титана на одном из производств в России, расскажет это видео:

Раздел 1. История и нахождение в природе титана.

Титан это элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Дмитрия Ивановича Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C. Температура плавления 1660±20 °C.

История и нахождение в природе титана

титан был назван так в честь древнегреческих персонажей Титанов. Назвал его так немецкий химик Мартин Клапрот по своим личным соображениями в отличии от французов которые старались давать названия в соответствии с химическими особенностями элемента, но так как тогда свойства элемента были неизвестны, было выбрано такое название.

Титан является 10 элементов по кол-ву его на нашей планете. Кол-во титана в земной коре равно 0.57 % по массе и 0.001 миллиграмм на 1 литр морской воды. Месторождения титана находятся на территории: Южно Африканской Республики, Украины, Российской Федерации, Казахстана, Японии, Австралии, Индии, Цейлона, Бразилии и Южной Кореи.

По физическим свойствам титан легкий серебристый металл , кроме того характерна высокая вязкость при механической обработке и склонен к прилипанию к режущему инструменту, поэтому используют специальные смазки или напыление для устранения этого эффекта. При комнатной температуре покрывается лассивирующей пленкой оксида TiO2, благодаря этому имеет стойкость к коррозии в большинстве агрессивных сред, кроме щелочей. Титановая пыль имеет свойство взрываться, при этом температура вспышки равна 400 °C. Титановая стружка пожароопасна.

Чтобы произвести титан в чистом виде или его сплавы в большинстве случаев используют диоксид титана с небольшим кол-вом соединений входящих в него. Например, рутиловый концентрат, получаемый при обогащении титановых руд. Но запасы рутила крайне малы и в связи с этим используют так называемый синтетический рутил или титановый шлак, получаемый при обработке ильменитовых концентратов.

Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Британии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана.


В периодической системе элементов Менделеева Дмитрия Ивановича титан имеет порядковый номер 22. Атомная масса природного титана, вычисленная по результатам исследований его изотопов, составляет 47,926. Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Всего сейчас известно 13 изотопов элемента № 22. Природный титан состоит из смеси пяти стабильных изотопов, наиболее широко представлен титан-48, его доля в природных рудах 73,99%. Титан и другие элементы подгруппы IVВ очень близки по свойствам к элементам подгруппы IIIВ (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместе с этими элементами. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди- три- и, тетрасоединения, с серой и элементами ее группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды.

Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами. Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на . В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе купрума и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.


Титан весьма тугоплавкий металл. Долгое время считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Хейс установили температуру плавления для чистого элементарного титана. Она составила 1668±3° С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте. Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см8, а при 100° С - 4,506 г/см3. Титан относится к группе металлов с удельной массой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, кадий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см3, магний (1,7 г/см3), (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия , и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз их превосходит.). Титан обладает значительной твердостью: он в 12 раз тверже алюминия, в 4 раза-железа и купрума . Еще одна важная характеристика металла - предел текучести. Чем он выше тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам. Предел текучести у титана почти в 18 раз выше, чем у алюминия. Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо , вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.


В отличие от большинства металлов титан обладает значительным электрическим сопротивлением: если электропроводность серебра принять за 100, то электропроводность купрума равна 94, алюминия - 60, железа и платины -15, а титана-всего 3,8. Титан - парамагнитный металл, он не намагничивается, как , в магнитном поле, но и не выталкивается из него, как . Его магнитная восприимчивость очень слаба, это свойство можно использовать при строительстве. Титан обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(мК), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз-магния, в 17-20 раз-алюминия и купрума. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных материалов: при 20 С он в 1,5 раза ниже чем у железа, в 2 - у купрума и почти в 3 - у алюминия. Таким образом, титан - плохой проводник электроэнергии и тепла.


Сегодня титановые сплавы широко применяют в авиационной технике. Титановые сплавы в промышленном масштабе впервые были использованы в конструкциях авиационных реактивных двигателей. Применение титана в конструкции реактивных двигателей позволяет уменьшить их массу на 10...25%. В частности, из титановых сплавов изготавливают диски и лопатки компрессора, детали воздухозаборника, направляющего аппарата и крепежные изделия. Титановые сплавы незаменимы для сверхзвуковых самолетов. Рост скоростей полета летательных аппаратов привел к повышению температуры обшивки, в результате чего алюминиевые сплавы перестали удовлетворять требованиям, которые предъявляются авиационной техникой сверхзвуковых скоростей. Температура обшивки в этом случае достигает 246...316 °С. В этих условиях наиболее приемлемым материалом оказались титановые сплавы. В 70-х годах существенно возросло применение титановых сплавов для планера гражданских самолетов. В среднемагистральном самолете ТУ-204 общая масса деталей из титановых сплавов составляет 2570 кг. Постепенно расширяется применение титана в вертолетах, главным образом, для деталей системы несущего винта, привода, а также системы управления. Важное место занимают титановые сплавы в ракетостроении.

Благодаря высокой коррозионной стойкости в морской воде титан и его сплавы находят применение в судостроении для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении. Постепенно области применения титана расширяются. Титан и его сплавы применяют в химической, нефтехимической, целлюлозно-бумажной и пищевой промышленности, цветной металлургии, энергомашиностроении, электронике, ядерной технике, гальванотехнике, при производстве вооружения, для изготовления броневых плит, хирургического инструмента, хирургических имплантатов, опреснительных установок, деталей гоночных автомобилей, спортинвентаря (клюшки для гольфа, снаряжение альпинистов), деталей ручных часов и даже украшений. Азотирование титана приводит к образованию на его поверхности золотистой пленки, по красоте не уступающей настоящему золоту.

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без Российской Федерации ) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта Российской Федерации , запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта Российской Федерации) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана Российской Федерации составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская организация «ВСМПО-АВИСМА».

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

В чистом виде и в виде сплавов

Титановый памятник Гагарину на Ленинском проспекте в Москве

металл применяется в: химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной индустрии, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга, медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах, спортивных товарах, ювелирных предметах торговли (Александр Хомов), мобильных телефонах, лёгких сплавах и т. д. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.

Титановое литье выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литье по выплавляемым моделям. Из-за технологических трудностей, в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве.

Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.

Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.

Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.

Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.

Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.

Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, т.к. имеет цвет, похожий на .


Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: , кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, Ni. Нейтральные упрочнители: цирконий, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие. Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6).

В 2005 фирма titanium corporation опубликовала следующую оценку потребления титана в мире:

13 % — бумага;

7 % — машиностроение.

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по её твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110.


Сегмент рынка потребительских товаров в настоящее время является наиболее быстро растущим сегментом титанового рынка. В то время как 10 лет назад этот сегмент составлял только 1-2 титанового рынка, сегодня он вырос до 8-10 рынка. В целом потребление титана в производстве потребительских товаров росло примерно в два раза быстрее, чем весь титановый рынок. Использование титана в спорте является наиболее долговременным и занимает наибольшую долю в применении титана в потребительских товарах. Причина популярности использования титана в спортивном инвентаре проста - он позволяет получить превосходящее любой другой металл соотношение веса и прочности. Использование титана в велосипедах началось примерно 25-30 лет назад и было первым применением титана в спортивном инвентаре. В основном используются трубы из сплава Тi3Аl-2.5V АSТМ Grade 9. Другие части производимые из титановых сплавов включают в себя тормоза, звздочки и пружины сидений. Использование титана в производстве клюшек для гольфа впервые началось в конце 80-х - самом начале 90-х годов производителями клюшек в Японии. До 1994-1995 годов это применение титана было практически неизвестно в США и в Европе. Ситуация изменилась, когда Callaway представила на рынок свою титановую клюшку, производимую организацией Ruger titanium и названную Great Big Bertha. В связи с очевидными преимуществами и с помощью хорошо продуманного фирмой Callaway маркетинга, титановые клюшки моментально приобрели огромную популярность. В течение короткого периода времени титановые клюшки прошли путь от эксклюзивного и дорогого инвентаря небольшой группы спекулянтов до широкого использования большинством гольфистов по прежнему оставаясь более дорогими по сравнению со стальными клюшками. Хотелось бы привести основные, по моему мнению, тенденции развития гольфого рынка он прошел путь от высокотехнологичного до массового производства в короткий 4-5 лет следуя путем других производств с высокими трудозатратами таких как производство одежды, игрушек и потребительской электроники, производство гольфовых клюшек ушло в страны с наиболее дешевой рабочей силой сначала на Тайвань, затем в , и сейчас заводы строятся в странах с еще более дешевым трудом, таких как Вьетнам и Таиланд титан определенно используется для драйверов drivers, где его превосходные качества дают очевидное преимущество и оправдывают более высокую цену. Однако, титан пока еще не нашел очень широкого потребления на последующих клюшках, так как значительное увеличение расходов не подкрепляется соответствующим улучшением игры в настоящее время драйверы в основном производятся с кованой ударной поверхностью, кованым или литым верхом и литым низом недавно Профессиональная Гольфовая РОА разрешила увеличить верхний предел так называемого коэффициента возврата, в связи с чем все производители клюшек будут стараться увеличить пружинящие свойства ударной поверхности. Для этого приходится уменьшить толщину ударной поверхности и использовать для нее более прочные сплавы, такие как SР700, 15-3-3-3 и ВТ-23. Теперь остановимся на применении титана и его сплавов на другом спортивном оборудовании. Трубы для гоночных велосипедов и другие детали изготавливают из сплава АSТМ Grade 9 Тi3Аl-2.5V. На удивление значительное количество титанового листа используется при производстве ножей для подводного плавания. Большинство производителей используют сплав Тi6Аl-4V, но этот сплав не обеспечивает долговечность кромки лезвия, как другие более прочные сплавы. Некоторые производители переключаются на использование сплава ВТ23.


В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан - это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза - меди и железа. Ещё один важный показатель - это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента , титановая проволока , титановые трубы , титановые втулки , титановый круг , титановый пруток .

Химические свойства

Чистый титан - это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана - это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана - это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Высокопрочный металл, обладающий многими уникальными свойствами. Изначально его применяли в оборонной и военной промышленности. Развитие различных отраслей наук привело к более широкому использованию титана.

Титан в авиастроении

Кроме высокой прочности титан отличается еще и легкостью. Этот металл широко используют в самолетостроении. Титан и его сплавы, благодаря физико-механическим свойствам, являются незаменимыми конструкционными материалами.

Интересный факт: до 60-ых годов титан в основном использовали для изготовления газовых турбин двигателей самолетов. Позднее металл стал применять при производстве деталей консолей самолетов.

Сегодня титан используют для изготовления обшивки самолета, силовых элементов, деталей двигателей и прочего.

Титан в ракетостроении и космической технике

В условиях открытого космоса любой объект подвержен как очень низким, так и высоким температурам. Кроме того, существует еще радиация и частички, которые двигаются с большой скоростью.

К материалам, способным выдержать все тяжелые условия относятся сталь, платина, вольфрам и титан. По ряду показателей предпочтение отдано последнему металлу.

Титан в судостроении

В судостроении титан и его сплавы используют для обшивки судов, а также при изготовлении деталей трубопроводов и насосов.

Малая плотность титана позволяет повысить маневренность судов и вместе с этим снизить их массу. Высокая коррозионная и эрозионная стойкость металла способствует увеличению срока эксплуатации (детали не ржавеют и не поддаются повреждениям).

Также из титана изготавливают навигационные приборы, поскольку этот металл обладает еще и слабыми магнитными свойствами.

Титан в машиностроении

Титановые сплавы используют при выпуске труб для теплообменной аппаратуры, конденсаторов турбин, внутренних поверхностей дымовых труб.

Благодаря своим высокопрочностным свойствам титан позволяет продлить срок эксплуатации оборудования и экономить на ремонтных работах.

Титан в нефтегазовой промышленности

Трубы из титановых сплавов помогут достичь глубины бурения до 15-20 км. Они высокопрочны и не подвержены таким сильным деформациям, как другие металлы.

Сегодня изделия из титана с успехом используются в разработке глубоководных нефтегазовых месторождений. Из высокопрочного металла изготавливают отводы, трубы, фланцы, переходники, прочее. Плюс огромную роль для качественной эксплуатации играет коррозионная стойкость титана к морской воде.

Титан в автомобилестроении

Снижение массы деталей в автомобилестроении помогает уменьшить расход топлива и тем самым сократить объем выхлопных газов. И здесь на помощь приходит титан и его сплавы. Для автомобилей (особенно гоночных) делают пружины, клапана, болты, передаточные валы и выхлопные системы из титана.

Титан в строительстве

Благодаря своей способности противостоять большинству известных негативных факторов окружающей среды, титан нашел применение и в строительстве. Его используют для наружной обшивки зданий, облицовки колонн, в качестве кровельных материалов, карнизов, софитов, крепежных приспособлений и т.д.

Титан в медицине

И в медицине огромную нишу заняли изделия из титана и его сплавов. Из этого прочного, легкого, гипоаллегренного и долговечного металла производят хирургические инструменты, протезы, зубные импланты, внутрикостные фиксаторы.

Титан в спорте

Благодаря все той же прочности и легкости, титан популярен и при производстве спортивного инвентаря. Из указанного металла производят части для велосипедов, клюшки для гольфа, ледорубы, утварь для туризма и альпинизма, лезвия для коньков, ножи для подводного плаванья, пистолеты (спортивная стрельба и органы правопорядка).

Титан в товарах народного потребления

Из титана изготавливают перьевые и шариковые ручки, ювелирные украшения, часы, посуду и садовую утварь, корпуса для мобильных телефонов, компьютеров, телевизоров.

Интересно: из титана изготавливают колокола. Они имеют красивое и необычное звучание.

Другое применение титана

Кроме прочего широкое применение нашел диоксид титана. Его используют в качестве белого пигмента для производства лакокрасочной продукции. Такой белый порошок обладает высокой укрывистостью, т.е. способен перекрыть любой цвет поверх которого его наносят.

При нанесении диоксида титана на поверхность бумаги она приобретает высокие печатные свойства и гладкость.

Именно обозначение Е171 на упаковках жевательных резинок и конфет свидетельствует о наличии диоксида титана. Кроме того этим соединением окрашивают крабовые палочки, пирожные, лекарства, крема, гели, шампуни, фарш, лапшу, осветляют муку и глазурь.

Титановый лист - рулонный и листовой титан ВТ1-0, ВТ20, ОТ4.